精英家教网 > 高中数学 > 题目详情
设M、N、P是△ABC三边上的点,它们使BM===,若=a=b,试用ab表示出来.

解析:如图,

=-

=--

=---

=-=b-a.

同理,可得=a-b.

=-=-(+)=a+b.

点评:解这类问题必须理解向量的减法与加法的几何意义,对下图所示的基本图形应熟练掌握.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M、N、P是△ABC三边上的点,它们使
BM
=
1
3
BC
CN
=
1
3
CA
AP
=
1
3
AB
,若
AB
=
a
AC
=
b
,试用
a
b
MN
NP
PM
表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC内一点,且
AB
AC
=2
3
,∠BAC=30°,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,若f(P)=(
1
2
,x,y)则
1
x
+
4
y
的最小值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC中任意一点,且
AB
MC
=2
3
+
AB
MA
,∠BAC=30°
,定义f(P)=(m,n,p),其中m、n、p分别表示△MBC、△MCA、△MAB的面积,若f(Q)=(
1
2
,x,y)
,则在平面直坐标系中点(x,y)的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x
y=-
3
3
x
上的两个动点,线段AB的长为2
3
,P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)任意作直线l(与x轴不垂直),设l与(1)中轨迹C交于M、N,与y轴交于R点.若
RM
MQ
RN
NQ
,证明:λ+μ 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)如图,l1、l2是两条互相垂直的异面直线,点P、C在直线l1上,点A、B在直线l2上,M、N分别是线段AB、AP的中点,且PC=AC=a,PA=
2
a

(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°).现给出下列四个条件:
CM=
1
2
AB
;②AB=
2
a
;③CM⊥AB;④BC⊥AC.
请你从中再选择两个条件以确定cosθ的值,并求之.

查看答案和解析>>

同步练习册答案