精英家教网 > 高中数学 > 题目详情
(理科)如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M是棱A1B1的中点,N是棱A1D1的中点.
(1)求直线AN与平面BB1D1D所成角的大小;
(2)求B1到平面ANC的距离.
分析:(1)以D为坐标原点,建立空间直角坐标系,求出平面BB1D1D的一个法量,利用
AN
和此法向量夹角求解.向量知识求解.
(2)求出平面ANC的一个方法向量,B1到平面ANC的距离等于
B1C
在此法向量方向上投影的绝对值.利用向量知识求解.
解答:解:以D为坐标原点,建立如图所示的坐标系.

则A(a,0,0),N(
a
2
,0,a),C(0,a,0),B1 (a,a,a)
 
AN
=(-
a
2
,0,a),
(1)易知平面BB1D1D的一个法量
AC
=(-a,a,0)----2分
AN
=(-
a
2
,0,a)
,----------------------------------2分
设直线AN与平面BB1D1D所成角为θ
cosφ=
n
AN
|
n
||
AN
|
=
10
10
------------------------------1分
sinθ=cosφ=
10
10
θ=arcsin
10
10

直线AN与平面BB1D1D所成角为arcsin
10
10
-------1分
(2)设平面ANC的一个方法向量
n2
=(u,v,w)

n2
AC
=0
n2
AN
=0
v=u
w=
1
2
u

取u=2,
n2
=(2,2,1)
-----3分
所以d=
|
B1C
n2
|
|
n2
|
=
3a
3
-----------------------------2分
=a----------------------------------------2分
点评:本题考查空间直角和平面所成就的计算,点面距离求解,考查空间想象能力、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(Ⅰ)求合唱团学生参加活动的人均次数;
(Ⅱ)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率.

(文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A.
(Ⅰ)求事件A的概率P(A);
(Ⅱ)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x0∈[-5,5]时,则g(x0)≥0”为事件B,求事件B的概率P(B).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•陕西高考理科•T7)若某空间几何体的三视图如图所示,则该几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年上海市财大附中高三4月检测数学试卷(解析版) 题型:解答题

(理科)如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M是棱A1B1的中点,N是棱A1D1的中点.
(1)求直线AN与平面BB1D1D所成角的大小;
(2)求B1到平面ANC的距离.

查看答案和解析>>

同步练习册答案