精英家教网 > 高中数学 > 题目详情

已知是公差为d的等差数列,若=    

 

【答案】

2

【解析】解:

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下命题:设an1,an2,…anm是公差为d的等差数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
an1+an2+…+anm
m
=ap+
r
m
d;特别地,当r=0时,称ap为an1,an2,…anm的等差平均项.
(1)已知等差数列{an}的通项公式为an=2n,根据上述命题,则a1,a3,a10,a18的等差平均项为:
 

(2)将上述真命题推广到各项为正实数的等比数列中:设an1,an2,…anm是公比为q的等比数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
 
;特别地,当r=0时,称ap为an1,an2,…anm的等比平均项.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下真命题:设an1an2,…,anm是公差为d的等差数列{an}中的任意m个项,若
n1+n2+…+nm
m
=p+
r
m
(0≤r<m,p、r、m∈N或r=0)①,则有
an1+an2+…+anm
m
=ap+
r
m
d
②,特别地,当r=0时,称apan1an2,…,anm的等差平均项.
(1)当m=2,r=0时,试写出与上述命题中的(1),(2)两式相对应的等式;
(2)已知等差数列{an}的通项公式为an=2n,试根据上述命题求a1,a3,a10,a18的等差平均项;
(3)试将上述真命题推广到各项为正实数的等比数列中,写出相应的真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•盐城一模)已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.
(1)若a20=80,求d;
(2)设bn=a10n.求bn
(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.

(1)若a20=80,求d;

(2)设bn=a10n,求bn;

(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省盐城市高考数学一模试卷(解析版) 题型:解答题

已知“接龙等差”数列a1,a2,…,a10,a11,…,a20,a21,…,a30,a31,…构成如下:a1=1,a1,a2,…,a10是公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列;…;a10n,a10n+1,a10n+2,…,a10n+10是公差为dn的等差数列(n∈N*);其中d≠0.
(1)若a20=80,求d;
(2)设bn=a10n.求bn
(3)当d>-1时,证明对所有奇数n总有bn>5.

查看答案和解析>>

同步练习册答案