精英家教网 > 高中数学 > 题目详情
已知定点A(4,
7
),若动点P在抛物线y2=4x上,且点P在y轴上的射影为点M,则|PA|-|PM|的最大值是
 
分析:可得抛物线的焦点和准线,进而由抛物线的定义可得|PA|-|PM|=|PA|-|PF|+1,由三角形的知识可得|PA|-|PF|≤|AF|,求距离可得答案.
解答:解:由题意抛物线y2=4x的焦点F(1,0),准线x=-1,
过P做PQ垂直准线于点Q,则|PM|=|PQ|-1
又由抛物线的性质知:|PQ|=|PF|
∴|PM|=|PF|-1
∴|PA|-|PM|=|PA|-|PF|+1
只要使|PA|-|PF|取最大值即可
又∵|PA|-|PF|≤|AF|=4,
当P在AF的延长线与抛物线交点处即可,
∴|PA|-|PM|的最大值=|AF|+1=5
故答案为:5
点评:本题考查抛物线的定义,利用抛物线的定义把距离转化是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列四个命题中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市黄州一中高三(下)高考交流数学试卷(理科)(解析版) 题型:选择题

下列四个命题中不正确的是( )
A.若动点P与定点A(-4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分
B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2-(m-n)2,若x≥0,则动点的轨迹是抛物线的一部分
C.已知两圆A:(x+1)2+y2=1、圆B:(x-1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆
D.已知A(7,0),B(-7,0),C(2,-12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线

查看答案和解析>>

同步练习册答案