【题目】如图,四棱锥
的一个侧面
为等边三角形,且平面
平面
,四边形
是平行四边形,
,
,
.
![]()
(1)求证:
;
(2)求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】某超市计划销售某种食品,现邀请甲、乙两个商家进场试销10天.两个商家向超市提供的日返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利3元;乙商家无固定返利,卖出不超出30件(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利10元. 经统计,试销这10天两个商家每天的销量如图所示的茎叶图(茎为十位数字,叶为个位数字):
![]()
(1)现从甲商家试销的10天中随机抽取两天,求这两天的销售量都小于30件的概率;
(2)根据试销10天的数据,将频率视作概率,用样本估计总体,回答以下问题:
①记商家乙的日返利额为X(单位:元),求X的分布列和数学期望;
②超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日返利额的数学期望考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①
越小,X与Y有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;③“若
,则
类比推出,“若
,则
;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
![]()
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为
,第二次取出的小球标号为
.
(1) 记事件
表示“
”, 求事件
的概率;
(2) 在区间
内任取2个实数
, 记
的最大值为
,求事件“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是圆锥的高,
是圆锥底面的直径,
是底面圆周上一点,
是
的中点,平面
和平面
将圆锥截去部分后的几何体如图所示.
![]()
(1)求证:平面
平面
;
(2)若
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱
中,侧棱
底面
,
平面
,
,
,
,
,
为棱
的中点.
![]()
(1)证明:
;
(2)求二面角
的平面角的正弦值;
(3)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com