【题目】如图,在正方体
中,有以下结论:
![]()
①
平面
;
②
平面
;
③
;
④异面直线
与
所成的角为
.
则其中正确结论的序号是____(写出所有正确结论的序号).
【答案】①③
【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;
②:举反例可以判断出该结论是错误的;
③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;
④:可以通过
,可以判断出异面直线
与
所成的角为
,即本结论是错误的,最后选出正确的结论序号.
①:
平面
,
平面
![]()
平面
,故本结论是正确的;
②:在正方形
中,
,显然
不垂直,而
,所以
不互相垂直,要是
平面
,则必有
互相垂直,显然是不可能的,故本结论是错误的;
③:
平面
,
平面
,
,在正方形
中,
,
平面
,
,所以
平面
,而
平面
,故
,因此本结论是正确的;
④:因为
,所以异面直线
与
所成的角为
,在正方形
中,
,故本结论是错误的,因此正确结论的序号是①③.
科目:高中数学 来源: 题型:
【题目】已知函数
有如下性质:如果常数
,那么该函数在
上是减函数,在
上是增函数.
(1)已知
,
,
,利用上述性质,求函数
的单调区间和值域.
(2)对于(1)中的函数
和函数
,若对于任意的
,总存在
,使得
成立,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)解不等式
;
(2)若函数
在区间
上存在零点,求实数
的取值范围;
(3)若函数
,其中
为奇函数,
为偶函数,若不等式
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面立角坐标系
中,过点
的圆的圆心
在
轴上,且与过原点倾斜角为
的直线
相切.
(1)求圆
的标准方程;
(2)点
在直线
上,过点
作圆
的切线
、
,切点分别为
、
,求经过
、
、
、
四点的圆所过的定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了
位市民进行调查,调查结果统计如下:
不支持 | 支持 | 合计 | |
男性市民 |
| ||
女性市民 |
| ||
合计 |
|
|
(1)根据已知数据把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否有
的把握认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有
位退休老人,其中
位是教师,现从这
位退体老人中随机抽取
人,求至多有
位老师的概率.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)当x>0时,函数g(x)=
(a>0)的最小值总大于函数f(x),试求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com