(本题12分)如图,
平面
,点
在
上,
∥
,四边形
为直角梯形,
,
,![]()
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)直线
上是否存在点
,使
∥平面
,若存在,求出点
;若不存在,说明理由。
(1)只需证
;(2)
;(3)存在M即为点E。
【解析】
试题分析:四边形
为正方形,所以
,以OD为 x轴,OB为y轴,OP为z轴建立空间直角坐标系 …1分
(1)
,所以
,因为
,所以
,所以
平面
…………4分
(2)平面
的法向量为
,平面
的法向量为![]()
解得二面角的余弦值为
……8分
(3)设
=
,则![]()
由
,解得
,存在M即为点E ……12分
考点:线面垂直的判定定理;二面角;线面平行的判定定理。
点评:证明线面垂直的常用方法:
①线线垂直Þ线面垂直
若一条直线垂直平面内两条相交直线,则这条直线垂直这个平面。
即![]()
②面面垂直Þ线面垂直
两平面垂直,其中一个平面内的一条直线垂直于它们的交线,则这条直线垂直于另一个平面。
即![]()
③两平面平行,有一条直线垂直于垂直于其中一个平面,则这条直线垂直于另一个平面。
即![]()
④两直线平行,其中一条直线垂直于这个平面,则另一条直线也垂直于这个平面。
即![]()
⑤向量法。
科目:高中数学 来源:2014届浙江省高二9月质量检测文科数学试卷(解析版) 题型:解答题
(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=
。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高三全真模拟考试数学文卷 题型:解答题
((本题12分)如图所示,在直四棱柱
中,
,点
是棱
上一点
(1)求证:
面
;
(2)求证:
;
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012年山东省济宁市高二上学期期中考试文科数学 题型:解答题
(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿
折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
查看答案和解析>>
科目:高中数学 来源:2013届四川省巴中市四县中高二上学期期末考试理科数学 题型:解答题
((本题12分)如图2,在棱长为1的正方体ABCD—A1B1C1D1中,点E、F、G分别是DD1、BD、BB1的中点。
(Ⅰ)求直线EF与直线CG所成角的余弦值;
(Ⅱ)求直线C1C与平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com