【题目】以直角坐标系
坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是
.
(1)求曲线C直角坐标方程;
(2)射线
与曲线C相交于点
,直线
(t为参数)与曲线C相交于点D,E,求
.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等。问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列。问五人各得多少钱?”(“钱”是古代的一种重量单位)。这个问题中,戊所得为( )
A.
钱 B.
钱 C.
钱 D.
钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形
中,E,F是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面
B.异面直线
与
所成的角为90°
C.异面直线
与
所成的角为60°D.直线
与平面
所成的角为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“新冠肺炎”疫情的控制需要根据大数据进行分析,并有针对性的采取措施.下图是甲、乙两个省份从2月7日到2月13日一周内的新增“新冠肺炎”确诊人数的折线图.根据图中甲、乙两省的数字特征进行比对,下列说法错误的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”确诊人数低于乙省
B.2月7日到2月13日甲省的单日新增“新冠肺炎”确诊人数最大值小于乙省
C.2月7日到2月13日乙省相对甲省的新增“新冠甲省肺炎”确诊人数的波动大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”确诊人数均比甲省多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产了一批零件,从中随机抽取100个作为样本,测出它们的长度(单位:厘米),按数据分成
,
,
,
,
5组,得到如图所示的频率分布直方图.以这100个零件的长度在各组的频率代替整批零件长度在该组的概率.
![]()
(1)估计该工厂生产的这批零件长度的平均值(同一组中的每个数据用该组区间的中点值代替);
(2)若用分层抽样的方式从第1组和第5组中抽取5个零件,再从这5个零件中随机抽取2个,求抽取的零件中恰有1个是第1组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知抛物线
,过点
的直线
交抛物线于
,
,
,
两点.当
垂直于
轴时,
的面积为
.
![]()
0
(1)求抛物线的方程:
(2)设线段
的垂直平分线交
轴于点
.
①证明:
为定值:
②若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形
的边长为4,点
,
分别为
,
的中点,将
,
,分别沿
,
折起,使
,
两点重合于点
,连接
.
(1)求证:
平面
;
(2)求
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上顶点为
,左,右焦点分别为
,
,
的面积为
,直线
的斜率为
.
为坐标原点.
(1)求椭圆
的方程;
(2)设过点
的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.
,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com