精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平行四边形ABCD中,AB=2BC=2a,∠A=60°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使A′C=2a,F为线段A′C的中点.
(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)求证:平面A′DE⊥平面ABCD.
分析:(Ⅰ) 取A′D的中点G,证明四边形BEGF为平行四边形,可得 BF∥EG,从而证明BF∥平面A′DE.
(Ⅱ) 取DE中点H,利用等边三角形的性质可得 A′H⊥DE,用勾股定理证明A′H⊥HC,从而 A′H⊥面ABCD,进而证明平面A′DE⊥平面ABCD.
解答:解:(Ⅰ) 取A′D的中点G,连接GF,GE,由条件易知:FG∥CD,FG=
1
2
CD,BE∥CD,BE=
1
2
 CD.
∴FG∥BE,FG=BE.∴四边形BEGF为平行四边形,∴BF∥EG,又BF?平面A′DE内,∴BF∥平面A′DE.
(Ⅱ)在平行四边形ABCD中,AB=2BC=2a,AE=EB=EA′=AD=DA′=a,取DE中点H,连接AH、CH,
∴A′H⊥DE,∵∠A=∠A′=60°,∴AH=A′H=
3
2
a,DH=
a
2

在△CHD中,CH2=DH2+DC2-2DH×DCcos60°=(
a
2
2+(2a)2-2×
a
2
×2a×
1
2
=
13
4
a2
在△CHA′中,∵CH2+A′H2=
13
4
a2+(
3
2
a)2=4a2=A′C2,∴A′H⊥HC,
又∵HC∩DE=H,∴A′H⊥面ABCD.   又∵A′H?平面A′DE,∴平面A′DE⊥平面ABCD.
点评:本题考查证明线面平行、面面垂直的方法,取A′D的中点G,取DE中点H,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,下列结论中错误的是(  )
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
AB
-
AD
=
BD
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD,
AD
=a
AB
=b
,M为AB的中点,点N在DB上,且
DN
=t
NB

(1)当t=2时,证明:M、N、C三点共线;
(2)若M、N、C三点共线,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,
AB
=
a
AD
=
b
AN
=3
NC
,则
BN
=
-
1
4
a
+
3
4
b
-
1
4
a
+
3
4
b
(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,若
OA
=
a
OB
=
b
则下列各表述是正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的中点.
(1)求AB所在直线的一般式方程;
(2)求直线CD与直线AB所成夹角的余弦值.

查看答案和解析>>

同步练习册答案