【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为“年轻型”人口;年龄中位数在20~30岁为“成年型”人口;年龄中位数在30岁以上为“老龄型”人口.
![]()
如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为“成年型”人口;②从2010年至2020年为“老龄型”人口;③放开二孩政策之后我国仍为“老龄型”人口.其中正确的是( )
A.②③B.①③C.②D.①②
科目:高中数学 来源: 题型:
【题目】2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停学不停课、停学不停教”,某校语文学科安排学生学习内容包含老师推送文本资料学习和视频资料学习两类,且这两类学习互不影响已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积5分;观看视频1个积2分,每日上限积6分.经过抽样统计发现,文本资料学习积分的概率分布表如表1所示,视频资料学习积分的概率分布表如表2所示.
![]()
![]()
(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为
,直线l的参数方程为
(t为参数).点P为曲线E上的动点,点Q为线段OP的中点.
(1)求点Q的轨迹(曲线C)的直角坐标方程;
(2)若直线l交曲线C于A,B两点,点
恰好为线段AB的三等分点,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的公差为
,前n项和为
,且满足____________.(从①
);②
成等比数列;③
,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)
(I)求
;
(Ⅱ)若
,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
上任意一点(异于顶点)与双曲线两顶点连线的斜率之积为
.
(I)求双曲线渐近线的方程;
(Ⅱ)过椭圆
上任意一点P(P不在C的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于
两点,且
,是否存在
使得该椭圆的离心率为
,若存在,求出椭圆方程:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,A为C的上顶点,过A的直线l与C交于另一点B,与x轴交于点D,O点为坐标原点.
(1)若
,求l的方程;
(2)已知P为AB的中点,y轴上是否存在定点Q,使得
?若存在,求Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,DE∥AB,AC⊥BC,BC=2AC=2,AB=2DE,且D点在平面ABC内的正投影为AC的中点H且DH=1.
![]()
(1)证明:面BCE⊥面ABC
(2)求BD与面CDE夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为
(
为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点
,倾斜角为
的直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
内,点
在曲线
:
,(
为参数,
)上运动,以
为极轴建立极坐标系.直线
的极坐标方程为
.
(Ⅰ)写出曲线
的标准方程和直线
的直角坐标方程;
(Ⅱ)若直线
与曲线
相交于
两点,点
在曲线
上移动,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com