已知离心率为
的椭圆
的顶点
恰好是双曲线
的左右焦点,点
是椭圆
上不同于
的任意一点,设直线
的斜率分别为
.
(1)求椭圆
的标准方程;
(2)当
,在焦点在
轴上的椭圆
上求一点Q,使该点到直线(
的距离最大。
(3)试判断乘积“(
”的值是否与点(
的位置有关,并证明你的结论;
(1)(
或(
;(2) (
;(3)
的值与点
的位置无关
解析试题分析:(1)注意要分类讨论,顶点是短轴顶点,还是长轴顶点;(2)椭圆上到(
距离最大的点是与直线(
平行且与椭圆相切的点;(3)利用点P在椭圆上满足椭圆方程,设点P坐标,带入椭圆方程,通过变形,即可知(
=
,与k无关.
试题解析:(1)双曲线(
的左右焦点为(
,即(
的坐标分别为(
. 所以设椭圆
的标准方程为(
,则(
,
且(![]()
,所以(
,从而(
,
所以椭圆(
的标准方程为(
或(![]()
(2) 当(
时,(
,故直线(
的方程为(
即(
,
设与(
平行的直线方程为:x+2y+m=0,即x=-2y-m,代入椭圆方程得:
,
,∵求距离最大,∴
,代入方程
,解得:
,∴点Q(
;
(3)设
则
,即![]()
![]()
![]()
.所以
的值与点
的位置无关,恒为
.
考点:(1)椭圆双曲线的标准方程;(2)直线与圆锥曲线的位置关系.
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的右焦点![]()
,长轴的左、右端点分别为
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.![]()
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点
在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦距为
,过右焦点和短轴一个端点的直线的斜率为
,
为坐标原点.
(1)求椭圆
的方程.
(2)设斜率为
的直线
与
相交于
、
两点,记
面积的最大值为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(1)求此椭圆的离心率;
(2)求证:以线段
为直径的圆过点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,其长轴长与短轴长的和等于6.![]()
(1)求椭圆
的方程;
(2)如图,设椭圆
的上、下顶点分别为
,
是椭圆上异于
的任意一点,直线
分别交
轴于点
,若直线
与过点
的圆
相切,切点为
.证明:线段
的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)的焦点F和椭圆
的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线
交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:
,C2:
. 设点P的轨迹为
.
(1)求C的方程;
(2)设直线
与C交于A,B两点.问k为何值时![]()
![]()
?此时
的值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.![]()
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com