【题目】2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着
的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )
![]()
A.样本中的女生数量多于男生数量
B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量
C.样本中的男生偏爱物理
D.样本中的女生偏爱历史
科目:高中数学 来源: 题型:
【题目】已知函数
的图象过点
和点
.
(1)求函数
的最大值与最小值;
(2)将函数
的图象向左平移
个单位后,得到函数
的图象;已知点
,若函数
的图象上存在点
,使得
,求函数
图象的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项和为
,并且
,
,数列
满足:
,
,记数列
的前
项和为
.
(1)求数列
的通项公式
及前
项和公式
;
(2)求数列
的通项公式
及前
项和公式
;
(3)记集合
,若
的子集个数为16,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的左,右焦点分别为
,
,点P为双曲线C右支上异于顶点的一点,
的内切圆与x轴切于点
,且直线
经过线段
的中点且垂直于线段
,则双曲线C的方程为________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型
:以
表示第
个时刻进入园区的人数;以
表示第
个时刻离开园区的人数.设定以
分钟为一个计算单位,上午
点
分作为第
个计算人数单位,即
;
点
分作为第
个计算单位,即
;依次类推,把一天内从上午
点到晚上
点
分分成
个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天
点至
点这一小时内,进入园区的游客人数
、离开园区的游客人数
各为多少?
(2)假设当日园区游客总人数达到或超过
万时,园区将采取限流措施.该单位借助该数学模型知晓当天
点(即
)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
是坐标轴上两点,动点
满足直线
与
的斜率之积为
(其中
为常数,且
).记
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)过点
斜率为
的直线与曲线
交于点
,点
在曲线
上,且
,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的焦距为
,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于
、
,且在椭圆C上存在点M,使得:
(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线
、
、
都具有性质H.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)若
,证明:函数
在区间
上是单调增函数;
(2)求函数
在区间
上的最大值;
(3)若函数
的图像过原点,且
的导数
,当
时,函数
过点
的切线至少有2条,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com