已知二次函数
与
交于
两点且
,奇函数
,当
时,
与
都在
取到最小值.
(1)求
的解析式;
(2)若
与
图象恰有两个不同的交点,求实数
的取值范围.
(1)
;(2)
.
【解析】
试题分析:(1)由已知
是奇函数,故
,从而得
,所以
,又当
时,
在
取到最小值,由均值不等式等号成立的条件可得
,即
.再由已知
及弦长公式,得
,解方程组便得
的值,从而得函数
和
的解析式;(2)由已知,
与
,即
有两个不等的实根,将问题转化为方程![]()
有两个不等的实根,即一元二次方程根的分布问题,列不等式组解决问题.
试题解析:(1)因为
是奇函数,由
得
,所以
,由于
时,
有最小值,所以
,则
,当且仅当:
取到最小值,所以
,即
.
设
,
,则
.由
得:
,所以:
,解得:
,所以
6分
(2)因为
与
,即
有两个不等的实根,也即方程![]()
有两个不等的实根.
当
时,有
,解得
;当
时,有
,无解.
综上所述,
.
13分
考点:1.函数的最值;2.函数的奇偶性;3.弦长公式;4.一元二次方程根的分布问题.
科目:高中数学 来源: 题型:
| 3 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 | 3 |
查看答案和解析>>
科目:高中数学 来源:2014届安徽省六校教育研究会高三素质测试文科数学试卷(解析版) 题型:解答题
已知二次函数
与两坐标轴分别交于不同的三点A、B、C.
(1)求实数t的取值范围;
(2)当
时,求经过A、B、C三点的圆F的方程;
(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形
的面积的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com