精英家教网 > 高中数学 > 题目详情

(05年浙江卷文)(14分)

如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC.

   (Ⅰ)求证:OD∥平面PAB;

   (Ⅱ) 求直线OD与平面PBC所成角的大小.

解析:解法一

(Ⅰ)∵O、D分别为AC、PC的中点:∴OD∥PA,又AC平面PAB,∴OD∥平面PAB.

(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC.

取BC中点E,连结PE,则BC⊥平面POE,作OF⊥PE于F,连结DF,则OF⊥平面PBC

∴∠ODF是OD与平面PBC所成的角.

又OD∥PA,∴PA与平面PBC所成角的大小等于∠ODF.

在Rt△ODF中,sin∠ODF=,∴PA与平面PBC所成角为arcsin

解法二:

∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.

以O为原点,射线OP为非负x轴,建立空间坐标系O-xyz如图),设AB=a,则A(a,0,0).

B(0, a,0),C(-a,0,0).设OP=h,则P(0,0,h).

(Ⅰ)∵D为PC的中点,∴,

∴OD∥平面PAB.

(Ⅱ)∵k=则PA=2a,∴h=可求得平面PBC的法向量

∴cos.

设PA与平面PBC所成角为θ,刚sinθ=|cos()|=.

∴PA与平面PBC所成的角为arcsin.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年西安市第一中学五模理)(12分) 已知长度为的线段的两端点在抛物线上移动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年滨州市质检三文)(12分)已知函数.

   (I)当m>0时,求函数的单调递增区间;

   (II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案