【题目】已知函数
,其函数图象的相邻两条对称轴之间的距离为
.
(1)求函数
的解析式及对称中心;
(2)将函数
的图象向左平移
个单位长度,再向上平移
个单位长度得到函数
的图象,若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知双曲线
﹣
=1(a>0,b>0)的实轴端点分别为A1 , A2 , 记双曲线的其中的一个焦点为F,一个虚轴端点为B,若在线段BF上(不含端点)有且仅有两个不同的点Pi(i=1,2),使得∠A1PiA2=
,则双曲线的离心率e的取值范围是( )
A.(
,
)
B.(
,
)
C.(1,
)
D.(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为
,直线
与抛物线相交于不同的
,
两点.
(1)求抛物线的标准方程;
(2)如果直线
过抛物线的焦点,求
的值;
(3)如果
,直线
是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是东西方向的公路北侧的边缘线,某公司准备在
上的一点
的正北方向的
处建一仓库,并在公路同侧建造一个正方形无顶中转站
(其中边
在
上),现从仓库
向
和中转站分别修两条道路
,
,已知
,且
,设
,
.
(1)求
关于
的函数解析式;
(2)如果中转站四周围墙(即正方形周长)造价为
万元
,两条道路造价为
万元
,问:
取何值时,该公司建中转围墙和两条道路总造价
最低?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业准备投资
万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
|
| |
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和环境等因素,全校总班级至少
个,至多
个,若每开设一个初、高中班,可分别获得年利润
万元、
万元,则第一年利润最大为 ![]()
A.
万元 B.
万元 C.
万元 D.
万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:
(其中c为小于6的正常数). (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必需等待一段时间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com