【题目】设m是实数,
,若函数
为奇函数.
求m的值;
用定义证明函数
在R上单调递增;
若不等式
对任意
恒成立,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】集合
、
为
的一个等浓二分划(即
,
,且
.记集合
中所有数的积为
,集合
中所有数的积为
,称
为
的等浓二分划的特征数.证明:
(1)集合
的等浓二分划的特征数一定为合数;
(2)若等浓二分划的特征数不为2的倍数,则该特征数为
的倍数.
注:有限集合
的元素个数简记为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集
其中
,
,2,
,n,
,若对任意的
2,
,都存在
,
,使得下列三组向量中恰有一组共线:
向量
与向量
;
向量
与向量
;
向量
与向量
,则称X具有性质P,例如
2,
具有性质P.
若
3,
具有性质P,则x的取值为______
若数集
3,
,
具有性质P,则
的最大值与最小值之积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在多面体
中,
与
均为边长为2的正方形,
为等腰直角三角形,
,且平面
平面
,平面
平面
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象在[a,b]上连续不断,定义:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值。若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”。
(1)若f(x)=sinx,x∈[
,
],请直接写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=(x-1)2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
![]()
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出
关于
的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:
,
)
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为( )
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,a,b,c为角A,B,C所对的边,且2cos2
+(cosB﹣
sinB)cosA=1.
(1)求角A的值;
(2)求f(x)=4cosxcos(x﹣A)在x∈[0,
]的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com