【题目】已知椭圆
右焦点
,离心率为
,过
作两条互相垂直的弦
,设
中点分别为
.
![]()
(1)求椭圆的方程;
(2) 证明:直线
必过定点,并求出此定点坐标;
(3) 若弦
的斜率均存在,求
面积的最大值.
【答案】(1)
;(2)直线MN过定点
;(3)S△FMN的最大值为
.
【解析】分析:(1)根据题意确定出c与e的值,利用离心率公式求出a的值,进而求出b的值,确定出椭圆方程即可;
(2)由直线AB与CD斜率均存在,设为k,表示出AB方程,设出A与B坐标,联立直线AB与椭圆方程,消去y得到关于x的一元二次方程,利用根与系数的关系表示出M,同理表示出N,根据M与N横坐标相同求出k的值,得到此时MN斜率不存在,直线MN恒过定点;若直线MN斜率存在,表示出直线MN斜率,进而表示出直线MN,令y=0,求出x的值,得到直线MN恒过定点,综上,得到直线MN恒过定点,求出定点坐标即可;
(3)根据P坐标,得到OP的长,由OF﹣OP表示出PF长,S△FMN=S△FPM+S△FPN,利用基本不等式求出面积的最大值即可.
详解:(1) (1)由题意:c=1,
=
,
∴a=
,b=c=1,
则椭圆的方程为
+y2=1;
(2) ∵AB,CD斜率均存在,
∴设直线AB方程为:y=k(x﹣1),
再设A(x1,y1),B(x2,y2),则有M(
,k(
﹣1)),
联立得:
,
消去y得:(1+2k2)x2﹣4k2x+2k2﹣2=0,
∴
,即M(
,
),
将上式中的k换成﹣
,同理可得:N(
,
),
若
=
,解得:k=±1,直线MN斜率不存在,
此时直线MN过点(
,0);
下证动直线MN过定点P(
,0),
若直线MN斜率存在,则kMN=
=
=
×
,
直线MN为y﹣
=
×
(x﹣
),
令y=0,得x=
+
×
=
×
=
,
综上,直线MN过定点(
,0);
(3) 由第(2)问可知直线MN过定点P(
,0),
故S△FMN=S△FPM+S△FPN=
×
|
|+
×
|
=
×
,
令t=|k|+
∈[2,+∞),S△FMN=f(t)=
×
=
×
,
∴f(t)在t∈[2,+∞)单调递减,
当t=2时,f(t)取得最大值,即S△FMN最大值
,此时k=±1.
科目:高中数学 来源: 题型:
【题目】对于两条平行直线
、
(
在
下方)和图象
有如下操作:将图象
在直线
下方的部分沿直线
翻折,其余部分保持不变,得到图象
;将图象
在直线
上方的部分沿直线
翻折,其余部分保持不变,得到图象
:再将图
在直线下方的部分沿直线
翻折,其余部分保持不变,得到图象
;再将图象
在直线
上方的部分沿直线
翻折,其余部分保持不变,得到图象
;以此类推…;直到图象
上所有点均在
、
之间(含
、
上)操作停止,此时称图象
为图象
关于直线
、
的“衍生图形”,线段
关于直线
、
的“衍生图形”为折线段
.
(1)直线型
平面直角坐标系中,设直线
,直线![]()
①令图象
为
的函数图象,则图象
的解析式为
②令图像
为
的函数图象,请你画出
和
的图象
![]()
③若函数
的图象与图象
有且仅有一个交点,且交点在
轴的左侧,那么
的取值范围是_______.
④请你观察图象
并描述其单调性,直接写出结果_______.
⑤请你观察图象
并判断其奇偶性,直接写出结果_______.
⑥图象
所对应函数的零点为_______.
⑦任取图象
中横坐标
的点,那么在这个变化范围中所能取到的最高点的坐标为(_______,_______),最低点坐标为(_______,_______).
⑧若直线
与图象
有2个不同的交点,则
的取值范围是_______.
⑨根据函数图象,请你写出图象
的解析式_______.
(2)曲线型
若图象
为函数
的图象,
平面直角坐标系中,设直线
,直线
,
则我们可以很容易得到
所对应的解析式为
.
![]()
①请画出
的图象,记
所对应的函数解析式为
.
②函数
的单调增区间为_______,单调减区间为_______.
③当
时候,函数
的最大值为_______,最小值为_______.
④若方程
有四个不同的实数根,则
的取值范围为_______.
(3)封闭图形型
平面直角坐标系中,设直线
,直线![]()
设图象
为四边形
,其顶点坐标分别为
,
,
,
,四边形
关于直线
、
的“衍生图形”为
.
①
的周长为_______.
②若直线
平分
的周长,则
_______.
③将
沿右上方
方向平移
个单位,则平移过程中
所扫过的面积为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数
的导函数
的图象,给出下列命题:
①-2是函数
的极值点;
②1是函数
的极值点;
③
的图象在
处切线的斜率小于零;
④函数
在区间
上单调递增.
则正确命题的序号是( )
![]()
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆C的参数方程为
(θ为参数).
(1)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列命题中,正确命题的个数为( )
①两个复数不能比较大小;
②
,若
,则
;
③若
是纯虚数,则实数
;
④
是虚数的一个充要条件是
;
⑤若
是两个相等的实数,则
是纯虚数;
⑥
的一个充要条件是
.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2002年北京国际数学家大会会标,是以中国古代数学家赵爽的弦图为基础而设计的,弦图用四个全等的直角三角形与一个小正方形拼成的一个大正方形
如图
,若大、小正方形的面积分别为25和1,直角三角形中较大锐角为
,则
等于
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数h(x)=lnx+
.
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣
+ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com