精英家教网 > 高中数学 > 题目详情

【题目】已知直线与双曲线

1)当为何值时,直线与双曲线有一个交点;

2)直线与双曲线交于两点且以为直径的圆过坐标原点,求值。

【答案】(1)当时,直线与双曲线有一个交点(2)

【解析】

1)根据直线与双曲线的位置关系中直线与双曲线有一个交点的情况,讨论直线与双曲线的渐近线平行与不平行,解出即可得到答案。

(2)联立直线与双曲线可得到,直线与双曲线交于两点且以为直径的圆过坐标原点等价于,即,代入即可解出答案。

1)直线过定点,双曲线渐近线方程为

①当直线与双曲线的渐近线平行时,只有一个交点,此时

②当时,联立得:

若直线与双曲线只有一个交点,则,解得

所以,当时,直线与双曲线有一个交点;

2)设点

联立得:

所以

因为以为直径的圆过坐标原点,所以

所以

解得.满足判别式大于0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点,若是线段的中点,则双曲线的离心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计ABO血型具有民族和地区差异.在我国H省调查了30488人,四种血型的人数如下:

血型

A

B

O

AB

人数/

7704

10765

8970

3049

频率

1)计算H省各种血型的频率并填表(精确到0.001);

2)如果从H省任意调查一个人的血型,那么他是O型血的概率大约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若fx0=x0,则称x0fx)的不动点,若f[fx0]=x0,则称x0fx)的稳定点,函数fx)的不动点稳定点的集合分别记为AB,即A={x|fx=x}B={x|f[fx]=x},那么:

1)函数gx=x2-2不动点______

2)集合A与集合B的关系是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;

(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为,点在椭圆上,

求椭圆C的方程.

斜率为k的直线l过点F且不与坐标轴垂直,直线l交椭圆于AB两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆的中心为坐标原点,焦点轴上,且在抛物线的准线上,点是椭圆上的一个动点,面积的最大值为.

1)求椭圆的方程;

2)过焦点作两条平行直线分别交椭圆四个点.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)若曲线在点处的切线与直线垂直,求单调递减区间和极值(其中为自然对数的底数);

(Ⅱ)若对任意恒成立.求的取值范围.

查看答案和解析>>

同步练习册答案