精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为(  )

A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)

【答案】B

【解析】

由方程f(x)=a,得到x1,x2关于x=﹣1对称,且x3x4=1;化简,利用数形结合进行求解即可.

作函数f(x)的图象如图所示,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4

∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,

即﹣log2x3=log2x4,则log2x3+log2x4=0,即log2x3x4=0,则x3x4=1;

当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;

则函数y=﹣2x3+,在≤x3<1上为减函数,则故当x3取得y取最大值y=1,

当x3=1时,函数值y=﹣1.即函数取值范围是(﹣1,1].

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx2=2py经过点(21).

(Ⅰ)求抛物线C的方程及其准线方程;

(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点MN,直线y=1分别交直线OMON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数, 为自然对数的底数).

1)当时,求函数的单调区间;

2)若函数内存在三个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若函数上单调递增,求的取值范围;

(2)当时,设函数的最小值为,求证:

(3)求证:对任意的正整数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,右焦点为,设MN是椭圆C上位于x轴上方的两动点,且直线与直线平行,交于点D

(Ⅰ)求的坐标;

(Ⅱ)求的最小值;

(Ⅲ)求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z满足|z|z的实部大于0z2的虚部为2.

1)求复数z

2)设复数zz2zz2之在复平面上对应的点分别为ABC,求(的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为F,圆,点为抛物线上一动点.已知当的面积为.

(I)求抛物线方程;

(II)若,过P做圆C的两条切线分别交y轴于M,N两点,求面积的最小值,并求出此时P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求圆的极坐标方程;

(2)已知射线,若与圆交于点(异于点),与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两个向量满足||=2,||=1,的夹角为60°,若向量2t7与向量t的夹角为钝角,求实数t的取值范围.

查看答案和解析>>

同步练习册答案