精英家教网 > 高中数学 > 题目详情

【题目】某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的数据得线性回归方程为 = x+ ,其中 =6.5,由此预测当广告费为7百万元时,销售额为万元.

【答案】6300
【解析】解:样本平均数 = =5, = =50.

(xi )(yi )=﹣3×(﹣20)+(﹣1)×(﹣10)+0+0+3×20=130,

(xi2=9+1+0+1+9=20,

=

=50﹣6.5×5=7.5.

线性回归方程为:y=6.5x+17.5,

预测当广告费为7百万元时,即x=7时,y=63百万元.

所以答案是:6300.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

①当时,甲走在最前面;

②当时,乙走在最前面;

③当时,丁走在最前面,当时,丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对任意恒成立,当时,.

1求证上是单调递增函数;

2已知,解关于的不等式

3,且不等式对任意恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场出售两款型号不同的手机,由于市场需求发生变化,第一款手机连续两次提价10%,第二款手机连续两次降价10%,结果都以1210元出售.

(1)求第一款手机的原价;

(2)若该商场同时出售两款手机各一部,求总售价与总原价之间的差额.(结果精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据

患流感

未患流感

服用药

2

18

未服用药

8

12

根据表中数据,通过计算统计量K2= ,并参考以下临界数据:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此认为“该药物有效”,则该结论出错的概率不超过(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为 + =1(a>b>0),双曲线 =1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4

(1)求椭圆C的方程;
(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1 , △BOF的面积为S2 , 当S1=2S2时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足

(1)求证:A,B,C三点共线;

(2)若A(1,cosx),B1+sinxcosx),且x∈[0, ],函数f(x)=2m+||+m2的最小值为5,求实数m的值。

查看答案和解析>>

同步练习册答案