【题目】某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
由表中的数据得线性回归方程为
=
x+
,其中
=6.5,由此预测当广告费为7百万元时,销售额为万元.
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程![]()
关于时间
的函数关系式分别为
,
,
,
,有以下结论:
①当
时,甲走在最前面;
②当
时,乙走在最前面;
③当
时,丁走在最前面,当
时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
满足:
对任意
、![]()
恒成立,当
时,
.
(1)求证
在
上是单调递增函数;
(2)已知
,解关于
的不等式
;
(3)若
,且不等式
对任意
恒成立.求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场出售两款型号不同的手机,由于市场需求发生变化,第一款手机连续两次提价10%,第二款手机连续两次降价10%,结果都以1210元出售.
(1)求第一款手机的原价;
(2)若该商场同时出售两款手机各一部,求总售价与总原价之间的差额.(结果精确到整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
| 患流感 | 未患流感 |
服用药 | 2 | 18 |
未服用药 | 8 | 12 |
根据表中数据,通过计算统计量K2=
,并参考以下临界数据:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
若由此认为“该药物有效”,则该结论出错的概率不超过( )
A.0.05
B.0.025
C.0.01
D.0.005
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|﹣|MB||.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为
+
=1(a>b>0),双曲线
﹣
=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4
.![]()
(1)求椭圆C的方程;
(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1 , △BOF的面积为S2 , 当S1=2S2时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足
。
(1)求证:A,B,C三点共线;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0,
],函数f(x)=
(2m+
)|
|+m2的最小值为5,求实数m的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com