精英家教网 > 高中数学 > 题目详情
已知f(x)=2x-1,g(x)=-2x,数列{an} (n∈N*)的各项都是整数,其前n项和Sn.若点(a2n-1,a2n)在函数y=f(x)或y=g(x)的图象上,且当n为偶数时,an=
n2
,则S80=820.
分析:由f(x)=2x-1,g(x)=-2x,点(a2n-1,a2n)在函数y=f(x)或y=g(x)的图象上,知a2n=2a2n-1-1,或a2n=-2a2n-1,当a2n=2a2n-1-1时,a2n-1=2(a2n-1-1),由数列{an} (n∈N*)的各项都是整数,且当n为偶数时,an=
n
2
,知a2n-1=
n+1
2
a2n=
2n
2
=n
,由此能够求出S80
解答:解:∵f(x)=2x-1,g(x)=-2x,
点(a2n-1,a2n)在函数y=f(x)或y=g(x)的图象上,
∴a2n=2a2n-1-1,或a2n=-2a2n-1
∵当n为偶数时,an=
n
2

∴当a2n=2a2n-1-1时,2a2n-1=a2n+1=n+1,
a2n-1=
n+1
2

令n=2k-1,k∈N*,则a4k-3=
2k-1+1
2
=k,即a1,a5,a9,…,成首项为1,公差为1的等差数列;
当a2n=-2a2n-1时,a2n-1=-
n
2

所以n为偶数时,a2n-1=-
n
2

令n=2k′,k′∈N*,则a4k′-1=-
2k′
2
=-k′,即a3,a7,a11,…,成首项为-1,公差为-1的等差数列;
所以S4n=S+S=[(1+2+3+…+n)+(-1-2-3-…-n)]+(1+2+3+4+…+2n)=
2n(1+2n)
2
=2n2+n.
∴S80=2×202+20=820.
故答案为:820.
点评:本题考查数列与函数的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案