【题目】已知函数
的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象过点![]()
(1)求
的解析式;
(2)求函数
的单调递增区间;
(3)将函数
的图象向右平移
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,若关于
的方程
,在区间
上有且只有一个实数解,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】【题目】已知抛物线
的焦点曲线
的一个焦点,
为坐标原点,点
为抛物线
上任意一点,过点
作
轴的平行线交抛物线的准线于
,直线
交抛物线于点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)求证:直线
过定点
,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:
,
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
:
,
:
,动点
分别在直线
,
上移动,
,
是线段
的中点.
(1)求点
的轨迹
的方程;
(2)设不经过坐标原点
且斜率为
的直线
交轨迹
于点
,点
满足
,若点
在轨迹
上,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,上顶点为
,若直线
的斜率为1,且与椭圆的另一个交点为
,
的周长为
.
(1)求椭圆的标准方程;
(2)过点
的直线
(直线
的斜率不为1)与椭圆交于
两点,点
在点
的上方,若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系
的原点为极点,
轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设曲线
与直线
交于
两点,若
点的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)如图,在四棱锥
中,
平面
,底面
是菱形,
,
为
与
的交点,
为
上任意一点.
![]()
(1)证明:平面
平面
;
(2)若
平面
,并且二面角
的大小为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com