设函数
.
(Ⅰ)若
,求
的最小值;
(Ⅱ)若当
时
,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数
.(
)
(1)若函数
有三个零点
,且
,
,求函数
的单调区间;
(2)若
,
,试问:导函数
在区间(0,2)内是否有零点,并说明理由.
(3)在(Ⅱ)的条件下,若导函数
的两个零点之间的距离不小于
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知函数
.
(Ⅰ)当
时,试判断
的单调性并给予证明;
(Ⅱ)若
有两个极值点
.
(i) 求实数a的取值范围;
(ii)证明:
。 (注:
是自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(a为实常数).
(1)若
,求证:函数
在(1,+.∞)上是增函数;
(2)求函数
在[1,e]上的最小值及相应的
值;
(3)若存在
,使得
成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数![]()
.
(Ⅰ)讨论函数
在定义域内的极值点的个数;
(Ⅱ)若函数
在
处取得极值,对![]()
,
恒成立,
求实数
的取值范围;
(Ⅲ)当
且
时,试比较
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com