(本题满分15分)
已知函数
.
(Ⅰ)当
时,试判断
的单调性并给予证明;
(Ⅱ)若
有两个极值点
.
(i) 求实数a的取值范围;
(ii)证明:
。 (注:
是自然对数的底数)
(1)
在R上单调递减 (2)
,对于函数中不等式的证明,一般要功过构造函数来结合函数的最值来证明不等式的成立。
解析试题分析:解:(1)当
时,
,
在R上单调递减 …………1分
,只要证明
恒成立, …………………………2分
设
,则
,
当
时,
,
当
时,
,当
时,
………………4分
,故
恒成立
所以
在R上单调递减 ……………………6分
(2)(i)若
有两个极值点
,则
是方程
的两个根,
故方程
有两个根
,
又
显然不是该方程的根,所以方程
有两个根, …………8分
设
,得![]()
若
时,
且
,
单调递减
若
时,![]()
时
,
单调递减
时
,
单调递增 ……………………………10分
要使方程
有两个根,需
,故
且![]()
故
的取值范围为
……………………………………12分
法二:设
,则
是方程
的两个根,
则
,
当
时,
恒成立,
单调递减,方程
不可能有两个根
所以
,由
,得
,
当
时,
,当
时,![]()
,得![]()
(ii) 由
,得:
,故
,![]()
,
………………14分
设
,则
,
上单调递减
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设函数
(a>0,b,cÎR),曲线
在点P(0,f (0))处的切线方程为
.
(Ⅰ)试确定b、c的值;
(Ⅱ)是否存在实数a使得过点(0,2)可作曲线
的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数
(其中e是自然对数的底数,k为正数)
(1)若
在
处取得极值,且
是
的一个零点,求k的值;
(2)若
,求
在区间
上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
在
上为增函数,且
,
为常数,
.
(1)求
的值;
(2)若
在
上为单调函数,求
的取值范围;
(3)设
,若在
上至少存在一个
,使得
成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com