【题目】已知底面边长为a的正三棱柱
(底面是等边三角形的直三棱柱)的六个顶点在球
上,且球
与此正三棱柱的5个面都相切,则球
与球
的表面积之比为________.
科目:高中数学 来源: 题型:
【题目】如图1,在边长为3的菱形
中,已知
,且
.将梯形
沿直线
折起,使
平面
,如图2,
分别是
上的点.
![]()
(1)若平面
平面
,求
的长;
(2)是否存在点
,使直线
与平面
所成的角是
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,过点
作与
轴垂直的直线
交椭圆于
,
两点(点
在第一象限),过椭圆的左顶点和上顶点的直线
与直线
交于
点,且满足
,设
为坐标原点,若
,
,则该椭圆的离心率为( )
A.
B.
C.
或
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥
中,
平面
,
,
是
的中点.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,左、右焦点分别为
、
,
为椭圆C上一点,且
的中点B在y轴上,
.
![]()
(1)求椭圆C的标准方程:
(2)若直线![]()
交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线
于点M,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记数列
的前n项和为
,其中所有奇数项之和为
,所有偶数项之和为![]()
若
是等差数列,项数n为偶数,首项
,公差
,且
,求
;
若数列
的首项
,满足
,其中实常数
,且
,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为5,2,则输出v的值为( )
![]()
A. 64 B. 68
C. 72 D. 133
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com