【题目】已知椭圆
的右焦点为F.
(1)求点F的坐标和椭圆C的离心率;
(2)直线
过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为
,判断直线
是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.
科目:高中数学 来源: 题型:
【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )
![]()
A.甲的物理成绩领先年级平均分最多
B.甲有2个科目的成绩低于年级平均分
C.甲的成绩从高到低的前3个科目依次是地理、化学、历史
D.对甲而言,物理、化学、地理是比较理想的一种选科结果
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某贫困地区几个丘陵的外围有两条相互垂直的直线型公路
,
,以及铁路线上的一条应开凿的直线穿山隧道
,为进一步改善山区的交通现状,计划修建一条连接两条公路
,
和山区边界的直线型公路
,以
,
所在的直线分别为
轴,
轴,建立平面直角坐标系
,如图所示,山区边界曲线为
,设公路
与曲线
相切于点
.
![]()
(1)设公路
交
轴,
轴分别为
两点,若公路
的斜率为-1,求
的长;
(2)当公路
的长度最短时,设公路
交
轴,
轴分别为
,
两点,并测得四边形
中,
,
,
千米,
千米,求应开凿的隧道
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为
,观影人数记为
,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后
与
的函数图象.
![]()
给出下列四种说法:
①图(2)对应的方案是:提高票价,并提高成本;
②图(2)对应的方案是:保持票价不变,并降低成本;
③图(3)对应的方案是:提高票价,并保持成本不变;
④图(3)对应的方案是:提高票价,并降低成本.
其中,正确的说法是____________.(填写所有正确说法的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:
![]()
每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,
是以
为直角顶点的等腰直角三角形,
为线段
的中点,
是
的中点,
与
分别是以
、
为底边的等边三角形,现将
与
分别沿
与
向上折起(如图
),则在翻折的过程中下列结论可能正确的个数为( )
![]()
图
图![]()
(1)直线
直线
;(2)直线
直线
;
(3)平面
平面
;(4)直线
直线
.
A.
个B.
个C.
个D.
个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com