精英家教网 > 高中数学 > 题目详情
5.定义A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},则B-A=(  )
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

分析 根据新定义求出B-A即可.

解答 解:由题意得:
B-A={x|x∈B且x∉A}={3,4},
故选:C.

点评 本题考查了新定义问题,考查集合的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.
(1)将总运费y表示为x的函数;
(2)如何选点M才使总运费最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2lnx在x=x0处的切线与直线x+3y+2=0垂直,则x0=(  )
A.$-\frac{1}{2}$或2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.复数z满足(3-4i)z=5+10i,则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足$\frac{z}{2+ai}$=$\frac{2}{1+i}$(a∈R),若z的实部是虚部的2倍,则a等于(  )
A.-2B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:x2+y2=$\frac{{3{a^2}}}{16}$相离,则该椭圆离心率的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$C.$(\frac{1}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若关于x的方程f(x)=g(x)在$[{\frac{1}{e},e}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.统计表明:某型号的汽车在匀速行驶中每小时的耗油量y(升)关于速度x(千米/时)的函数解析式可表示为y=$\frac{{x}^{2}}{800}$-$\frac{3}{20}$x+8(0<x≤120),已知甲、乙两地相距100千米.
(1)当汽车以40千米/时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{b}{6}$$\overrightarrow{AC}$,则$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值为3.

查看答案和解析>>

同步练习册答案