(本题满分14分)
在直角坐标系xOy中,椭圆C1:
的左、右焦点分别为F1、F2.其中F2也是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A、B两点,若
·
=0,求直线l的方程.
解:(Ⅰ)由
:
知
.……………………………………………1分
设
,
在
上,因为
,所以
,
得
,
.………………………………………………………………… 3分
在
上,且椭圆
的半焦距
,于是
………………………5分
消去
并整理得
, 解得
(
不合题意,舍去).
故椭圆
的方程为
. ………………………………………………… 7分
(Ⅱ)由
知四边形
是平行四边形,其中心为坐标原点
,
因为
,所以
与
的斜率相同,
故
的斜率
.
设
的方程为
.……………………………………………………… 8分
由
………………………………………………………………… 9分
消去
并化简得
.…………………………………… 10分
设
,
,
,
.……………………11分
因为
,所以
.
![]()
![]()
.……………… 12分
所以.此时
,
故所求直线
的方程为
,或
. …………………… 14分
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com