精英家教网 > 高中数学 > 题目详情
3.已知点A(-1,0),B(1,0)为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.x2-$\frac{{y}^{2}}{3}$=1C.x2-y2=1D.x2-$\frac{{y}^{2}}{2}$=1

分析 由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合a,b,c的关系,求出a=b.由a=1,即可求得双曲线的标准方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,
过点M作MN⊥x轴,垂足为N,则∠MBN=60°,
在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,
即有|BN|=2acos60°=a,|MN|=2asin60°=$\sqrt{3}$a,
故点M的坐标为M(2a,$\sqrt{2}$a),
代入双曲线方程得 $\frac{4{a}^{2}}{{a}^{2}}$-$\frac{3{a}^{2}}{{b}^{2}}$=1,
即为a2=b2
由A(-1,0),B(1,0)为双曲线的双曲线左右顶点,
则a=b=1,
∴双曲线的标准方程:x2-y2=1,
故选:C.

点评 本题考查双曲线的简单性质:离心率,注意运用点满足双曲线的方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设曲线y=ax-ln(2x+1)在点(0,0)处的切线方程为y=2x,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的公比q>1,a2,a3是方程x2-6x+8=0的两根.
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.极坐标与直角坐标系有相同的长度单位,以原点O为极点,以x轴正半轴为极轴,已知直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(1)求C的直角坐标方程
(2)设直线l与曲线C交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线 x2=y的准线方程是(  )
A.4 x+1=0B.4 y+1=0C.2x+1=0D.2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α∈(0,π),sin α+cos α=$\frac{1}{3}$,则cos 2α的值是(  )
A.$\frac{\sqrt{17}}{9}$B.$\frac{-2\sqrt{2}}{3}$C.-$\frac{\sqrt{17}}{9}$D.$\frac{\sqrt{17}}{9}$或-$\frac{\sqrt{17}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义运算a⊕b=a2+2ab-b2,则cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=$\frac{1+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线3x-4y+1=0与直线6x-8y-1=0间的距离为$\frac{3}{10}$.

查看答案和解析>>

同步练习册答案