| A. | x2-$\frac{{y}^{2}}{4}$=1 | B. | x2-$\frac{{y}^{2}}{3}$=1 | C. | x2-y2=1 | D. | x2-$\frac{{y}^{2}}{2}$=1 |
分析 由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合a,b,c的关系,求出a=b.由a=1,即可求得双曲线的标准方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,
过点M作MN⊥x轴,垂足为N,则∠MBN=60°,![]()
在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,
即有|BN|=2acos60°=a,|MN|=2asin60°=$\sqrt{3}$a,
故点M的坐标为M(2a,$\sqrt{2}$a),
代入双曲线方程得 $\frac{4{a}^{2}}{{a}^{2}}$-$\frac{3{a}^{2}}{{b}^{2}}$=1,
即为a2=b2,
由A(-1,0),B(1,0)为双曲线的双曲线左右顶点,
则a=b=1,
∴双曲线的标准方程:x2-y2=1,
故选:C.
点评 本题考查双曲线的简单性质:离心率,注意运用点满足双曲线的方程,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{17}}{9}$ | B. | $\frac{-2\sqrt{2}}{3}$ | C. | -$\frac{\sqrt{17}}{9}$ | D. | $\frac{\sqrt{17}}{9}$或-$\frac{\sqrt{17}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com