【题目】在多面体
中,四边形
与
是边长均为
的正方形,四边形
是直角梯形,
,且
.
![]()
(1)求证:平面
平面
;
(2)若
,求四棱锥
的体积.
【答案】(1)详见解析(2)![]()
【解析】
试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明往往利用线面垂直判定定理给予证明,即从线线垂直出发给予证明,而线线垂直,往往需要从两方面进行寻找与论证,一是结合平几知识,本题利用勾股定理证得
,二是利用线面垂直性质定理,即先由线线垂直
得线面垂直
平面
,而
,则
平面
,因此可得
,最后根据线面垂直判定定理得
平面
,(2)求四棱锥的体积,关键是求高,而高的寻找依赖于线面垂直:过
作
于
,则易证过
作
,即
为高,最后根据体积公式得体积
试题解析:
![]()
(1)证明:连接
,由
可知:
;
,
可得
,从而
.......................3分
∵
,∴
平面
,
又∵
,∴
平面
,∴
,∴
平面
,
∵
平面
,∴平面
平面
................6分
(2)![]()
过
作
的平行线交于
的延长线于点
,连接
交于点
,
过
作
于
,
则
,.................8分
可得四边形
的面积
,....................10分
故
...............12分
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
(
都在
轴上方),且
.
![]()
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A已知直线
的参数方程为
(
为参数),在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,圆
的方程为![]()
(1)求圆
的圆心
的极坐标;
(2)判断直线
与圆
的位置关系.
已知不等式
的解集为![]()
(1)求实数
的值;
(2)若不等式
对
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都是正数的数列
的前
项和为
,
,![]()
(1)求数列
的通项公式;
(2)设数列
满足:
,
,数列
的前
项和
,求证:
;
(3)若
对任意
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①对立事件一定是互斥事件;
②函数
的最小值为2;
③八位二进制数能表示的最大十进制数为256;
④在
中,若
,
,
,则该三角形有两解.
其中正确命题的个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,短轴的一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为
,求△AOB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年3月的“两会”上,李克强总理在政府工作报告中,首次提出“倡导全民阅读”,某学校响应政府倡导,在学生中发起读书热潮.现统计了从2014年下半年以来,学生每半年人均读书量,如下表:
时间 | 2014年下半年 | 2015年上半年 | 2015年下半年 | 2016年上半年 | 2016年下半年 |
时间代号 |
|
|
|
|
|
人均读书量 |
|
|
|
|
|
根据散点图,可以判断出人均读书量
与时间代号
具有线性相关关系.
(1)求
关于
的回归方程
;
(2)根据所求的回归方程,预测该校2017年上半年的人均读书量.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
, ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com