精英家教网 > 高中数学 > 题目详情
13.若幂函数f(x)的图象经过点A(4,2),则它在A点处的切线方程为x-4y+4=0.

分析 求出幂函数的解析式,然后求解导数,求出斜率,然后求解切线方程.

解答 解:设幂函数为:y=xa,幂函数f(x)的图象经过点A(4,2),
可得2=4a,解得a=$\frac{1}{2}$
y=x${\;}^{\frac{1}{2}}$的导函数为:y′=$\frac{1}{2{x}^{\frac{1}{2}}}$,在点A(4,2),处的切线的斜率为:$\frac{1}{4}$
所以切线方程为:y-2=$\frac{1}{4}$(x-4),即x-4y+4=0.
故答案为:x-4y+4=0.

点评 本题考查幂函数的解析式的求法,切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,则$2\overrightarrow a-3\overrightarrow b$的坐标是(  )
A.(6,-5)B.(6,7)C.(6,1)D.(6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(II)令cn=(-1)n•$\frac{n}{2}$+3n,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)过右焦点F的直线l,交椭圆于A、B两点,记△AOF的面积为S1,△BOF的面积为S2,当S1=2S2时,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在公差不为0的等差数列{an}中,a22=a3+a6,且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线y=x2+$\frac{1}{4}$相切,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次数学测验后,班级学委王明对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
(Ⅰ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类代数类总计
男同学16622
女同学81220
总计241842
根据以下列联表,在犯错误不超过多少的情况下认为选做“几何类”或“代数类”与性别有关.
(Ⅱ)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学委王明和两名数学科代表三人都在选做《不等式选讲》的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案