已知函数
,![]()
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)求函数g(x)在区间
上的最小值;
(Ⅲ)若存在
,使方程![]()
成立,求实数a的取值范围(其中e=2.71828是自然对数的底数)
(Ⅰ)
时,
的单调增区间为
,单调减区间为
.
(Ⅱ)
;(III)实数
的取值范围为
.
解析试题分析:(Ⅰ)求导数,根据
科目:高中数学
来源:
题型:解答题
如图,现要在边长为
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知数列
科目:高中数学
来源:
题型:解答题
已知函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
,
得到函数的单调区间.
(Ⅱ)遵循“求导数,求驻点,讨论单调性,确定最值”.
(III) 由
可得![]()
“分离参数”得
.
令
,遵循“求导数,求驻点,讨论单调性,确定最值”.
“表解法”往往直观易懂,避免出错.
试题解析:(Ⅰ)
1分
当
时,
,令
得
2分
∴当
时,
的单调增区间为
,单调减区间为
. 3分
(Ⅱ)
, 令
,得
4分
①当
时,在区间
上
,
为增函数,
∴
5分
②当
时,在区间
上
,
为减函数, 6分
在区间
上
,
为增函数, 7分
∴
8分
(III) 由
可得![]()
∴
, 9分
令
,则
10分![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
单调递减 ![]()
![]()
Happy寒假作业快乐寒假系列答案
金象教育U计划学期系统复习寒假作业系列答案
八斗才火线计划寒假西安交通大学出版社系列答案
伴你成长橙色寒假系列答案
帮你学寒假作业系列答案
备战中考寒假系列答案
创新大课堂系列丛书寒假作业系列答案
创新自主学习寒假新天地系列答案
创优教学寒假作业年度总复习系列答案
导学练寒假作业云南教育出版社系列答案
的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.![]()
(1)求
的取值范围;(运算中
取
)
(2)若中间草地的造价为
元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
,
(其中
为常数);
(Ⅰ)如果函数
和
有相同的极值点,求
的值;
(Ⅱ)设
,问是否存在
,使得
,若存在,请求出实数
的取值范围;若不存在,请说明理由.
(Ⅲ)记函数
,若函数
有5个不同的零点,求实数
的取值范围.
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
的前n项和为Sn,对一切正整数n,点
在函数
的图像上,且过点
的切线的斜率为kn.
(1)求数列
的通项公式;
(2)若
,求数列
的前n项和Tn.
,设![]()
(Ⅰ)求函数
的单调区间
(Ⅱ)若以函数
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值
(Ⅲ)是否存在实数
,使得函数
的图象与函数
的图象恰有四个不同交点?若存在,求出实数
的取值范围;若不存在,说明理由。
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号