【题目】在平面直角坐标系xOy中,直线l的参数方程为
(
为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为![]()
(1)求曲线C的直角坐标方程
(2)设直线l与x轴交于点P,且与曲线C相交与A、B两点,若
是
与
的等比中项,求实数m的值
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,
,
,过
点作
的垂线,交
的延长线于点
,
.连结
,交
于点
,如图1,将
沿
折起,使得点
到达点
的位置,如图2.
![]()
(1)证明:平面
平面
;
(2)若
为
的中点,
为
的中点,且平面
平面
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)在R上存在导数
,当x<0时,![]()
f(x),则使得(x2﹣1)f(x)<0成立的x的取值范围为( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,在等腰梯形
中,
,
,
是
的中点.将
沿
折起,使二面角
为
,连接
,
得到四棱锥
(如图乙),
为
的中点,
是棱
上一点.
![]()
(1)求证:当
为
的中点时,平面
平面
;
(2)是否存在一点
,使平面
与平面
所成的锐二面角为
,若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程是
为参数),曲线
的参数方程是
为参数),以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求直线
和曲线
的极坐标方程;
(2)已知射线
与曲线
交于
两点,射线
与直线
交于
点,若
的面积为1,求
的值和弦长
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分.每项评分最低分0分,最高分100分.每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如图
![]()
请根据图中所提供的信息,完成下列问题:
(1)若从交通得分排名前5名的景点中任取1个,求其安全得分大于90分的概率;
(2)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为ξ,求随机变量ξ的分布列和数学期望;
(3)记该市26个景点的交通平均得分为
,安全平均得分为
,写出
和
的大小关系?(只写出结果)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为
(θ为参数),直线l经过定点P(2,3),倾斜角为
.
(Ⅰ)写出直线l的参数方程和圆C的标准方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)当
时,讨论函数
的单调性;
(2)当
时,令
,是否存在区间
,使得函数
在区间
上的值域为
,若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com