【题目】如图1,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形.将正方形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M为AF1的中点,如图2. ![]()
(I)求证:AC⊥BM;
(Ⅱ)求平面CE1M与平面ABE1F1所成锐二面角的余弦值.
【答案】解:(Ⅰ)证明四边形ABE1F1是正方形,∴BE1⊥AB.
平面ABE1F1⊥平面ABCD,平面ABE1F1∩平面ABCD=AB,BE1面ABE1F1
∴BE1⊥平面ABCD,
∵AC平面ABCD,∴BE1⊥AC.
设AD=1,则AC=AB=
,∴AC⊥AB且AB∩BE1=B.
∴AC⊥面ABE1F1,又MB面ABE1F1∴AC⊥MB.
(Ⅱ)如图以B为原点,建立如图所示的空间直角坐标系.
则A(1,1,0),B(0,0,0),C(2,0,0),E1(0,0,
),M(1,1,
).
由题意得,
,
,
,
设面CE1M的一个法向量为
,
,可得
.
又平面ABE1F1得法向量为
.
设平面CE1M与平面ABE1F1所成锐二面角为θ.
cosθ=|cos
|=
.
∴平面CE1M与平面ABE1F1所成锐二面角的余弦值为
.
![]()
【解析】(Ⅰ)只需证明BE1⊥AC.AC⊥AB且AB,可得AC⊥面ABE1F1,AC⊥MB.(Ⅱ)以B为原点,建立如图所示的空间直角坐标系.则A(1,1,0),B(0,0,0),C(2,0,0),E1(0,0,
),M(1,1,
).利用向量求解
【考点精析】掌握直线与平面垂直的性质是解答本题的根本,需要知道垂直于同一个平面的两条直线平行.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:mx2+y2=1(m>0).
(Ⅰ)若椭圆E的右焦点坐标为
,求m的值;
(Ⅱ)由椭圆E上不同三点构成的三角形称为椭圆的内接三角形.若以B(0,1)为直角顶点的椭圆E的内接等腰直角三角形恰有三个,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=
,若{bn}的前n项和为Tn , 证明:Tn<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下茎叶图记录了甲、乙两组各六名学生在一次数学测试中的成绩(单位:分),规定85分以上(含85分)为优秀,现分别从甲、乙两组中随机选取一名同学的数学成绩,则两人成绩都为优秀的概率是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有
,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下茎叶图记录了甲、乙两个篮球队在3次不同比赛中的得分情况.乙队记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以m表示.那么在3次比赛中,乙队平均得分超过甲队平均得分的概率是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com