【题目】如图,已知曲线![]()
,曲线
,P是平面上一点,若存在过点P的直线与
都有公共点,则称P为“
型点”.
![]()
(1)若
,
时,判断
的左焦点
是否为“
型点”,并说明理由;
(2)设直线
与
有公共点,求证
,进而证明原点不是“
型点”;
(3)若圆![]()
内的任意一点都不是“
型点”,试写出a、b满足的关系式,并说明理由.
【答案】(1)是,见解析;(2)见解析;(3)
,见解析
【解析】
(1)由双曲线方程可知,双曲线的左焦点为(
,0),存在直线x
分别求得交点坐标,即可说明;
(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过原点的直线不可能同时与C1和C2有公共点;
(3)先考虑圆![]()
内存在过Q的直线l与C1,C2都有公共点时的条件,由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|>1时,过圆
内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,从而得到
,再取补集即可.
(1)C1的左焦点为(
,0),存在直线x
时,
与双曲线C1的交点为(
,±
),与曲线C2交点为(
,±(1
)),
则C1的左焦点是“C1﹣C2型点”;
(2)因为直线y=kx与C2有公共点,
所以方程组
有实数解,因此|kx|=|x|+1,得|k|
1.
若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.
考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).
显然直线x=0与C1无公共点.
如果直线为y=kx(|k|>1),则由方程组
,得x2
,矛盾.
所以直线y=kx(|k|>1)与C1也无公共点.
因此原点不是“C1﹣C2型点”.
(3)记圆![]()
,取圆O内的一点Q,
由题意圆![]()
内的任意一点都不是“
型点”的反面是存在过Q的直线l与C1,C2都有公共点,
显然l不与x轴垂直,
故可设l:y=kx+t.
若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,
从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.
![]()
因为l与C1有公共点,所以方程组
有实数解,
得(
﹣
k2)x2﹣
ktx﹣
t2﹣
=0.
因为|k|>1,且
所以
﹣
k2≠0,
因此△=(
kt)2﹣4(
﹣
k2)(﹣
t2﹣
)≥0,
即t2
k2﹣
.
因为圆O的圆心(0,0)到直线l的距离
,
所以
,从而
k2﹣
,得
>
k2﹣
,
k2
恒成立,
又k2
∴当
时,即
时,
圆![]()
内存在过Q的直线l与C1,C2都有公共点,
因此,圆![]()
内的任意一点都不是“
型点”,
则需
.
科目:高中数学 来源: 题型:
【题目】已知函数
,如果存在给定的实数对
,使得
恒成立,则称
为“
函数”;
(1)判断函数
,
是否是“
函数”;
(2)若
是一个“
函数”,求出所有满足条件的有序实数对
;
(3)若定义域为
的函数
是“
函数”,且存在满足条件的有序实数对
和
,当
时,
的值域为
,求当
时
的值域;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村
户贫困户.为了做到精准帮扶,工作组对这
户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标
.将指标
按照
,
,
,
,
分成五组,得到如图所示的频率分布直方图.规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当
时,认定该户为“亟待帮住户”.工作组又对这
户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.
![]()
(1)完成下面的列联表,并判断是否有
的把握认为绝对贫困户数与受教育水平不好有关:
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 |
| ||
相对贫困户 |
| ||
总计 |
|
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于
的贫困户中,随机选取两户,用
表示所选两户中“亟待帮助户”的户数,求
的分布列和数学期望
.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)
①甲地5个数据的中位数为24,众数为22;
②乙地5个数据的中位数为27,总体均值为24;
③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.
则肯定进入夏季的地区有_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数
,试判断
是否为“局部奇函数”?并说明理由;
(2)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(3)若
为定义域
上的“局部奇函数”,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:
,并整理得到如下频率分布直方图:
![]()
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com