如图,已知抛物线
的焦点在抛物线
上,点
是抛物线
上的动点.![]()
(Ⅰ)求抛物线
的方程及其准线方程;
(Ⅱ)过点
作抛物线
的两条切线,
、
分别为两个切点,设点
到直线
的距离为
,求
的最小值.
科目:高中数学 来源: 题型:解答题
已知,椭圆C以过点A(1,
),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为
的椭圆C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是椭圆C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,已知点P
,曲线C的参数方程为
(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
。
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与直线C的两个交点为A、B,求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
=1(a>b>0)的离心率为
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D. ![]()
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
圆C的圆心在y轴上,且与两直线l1:
;l2:
均相切.
(I)求圆C的方程;
(II)过抛物线
上一点M,作圆C的一条切线ME,切点为E,且
的最小值为4,求此抛物线准线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
选修4-4:坐标系与参数方程
在直角坐标系
中,直线L的方程为x-y+4=0,曲线C的参数方程为![]()
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
最小值为
.![]()
(1)求椭圆
的方程;
(2)若动直线
均与椭圆
相切,且
,试探究在
轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com