精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+1=-an2+2an(n∈N*),且0<a1<1.
(1)用数学归纳法证明:0<an<1;
(2)若bn=lg(1-an),且a1=
9
10
,求无穷数列{
1
bn
}
所有项的和.
分析:(1)要求用数学归纳法证明:按照两个步骤进行,特别注意递推即可.
(2)由an+1=-an2+2an和bn=lg(1-an)及a1=
9
10
,求得bn列进而求得{
1
bn
}
,再取极限即可.
解答:(1)证明:①当n=1时,由条件知,成立
②假设n=k成立,即0<ak<1成立,
当n=k+1时,ak+1=-ak2+2ak=-(ak-1)2+1,
∵0<aK<1
∴0<(ak-1)2<1
∴0<-(ak-1)2+1<1
∴0<aK+1<1
这就是说,当=k+1时,0<ak<1也成立.
根据①②知,对任意n∈N*,不等式0<an<1恒成立.

(2)解:1-an+1=(1-an2,0<an<1;
lg(1-an+1)=lg(1-an2,,即lg(1-an+1)=2lg(1-an
即:bn+1=2bn
∴{bn}是以-1为首项,以2为公比的等比数列.
∴bn=-2n-1,∴
1
bn
= -
1
2n-1

无究数列{
1
bn
}所有项的和为:
1
b1
+
1
b2
+…+
1
bn
+…
=
lim
n→∞
1
b1
+
1
b2
+…+
1
bn
)=
lim
n→∞
[(-1)×
1-
1
2
n
1-
1
2
]=-2×
lim
n→∞
1-(
1
2
) n
)=-2
点评:本题主要考查数学归纳法和等比数列的求法及无穷数学所有项的和的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案