(本小题满分12分)
四棱锥
,面
⊥面
.侧面
是以
为直角顶点的等腰直角三角形,底面
为直角梯形,
,
∥
,
⊥
,
为
上一点,且
.![]()
(Ⅰ)求证
⊥
;
(Ⅱ)求二面角
的正弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知
⊙
所在的平面,AB是⊙
的直径,
,
是⊙
上一点,且
,
分别为
中点。![]()
(1)求证:
平面
;
(2)求证:
;
(3)求三棱锥
-
的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.![]()
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥
中,底面ABCD是边长为a的正方形,侧面
底面ABCD,且
,若E,F分别为PC,BD的中点.![]()
(1)求证:
平面PAD;
(2)求证:平面PDC
平面PAD;
(3)求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。![]()
(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求
的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在平行四边形ABCD中,AB=1,BD=
,∠ABD=90°,E是BD上的一个动点,现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.![]()
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
如图,在四棱锥
中,底面
是矩形,
平面
,
,
.以
的中点
为球心、
为直径的球面切
于点
.![]()
(1)求证:PD⊥平面
;
(2)求直线
与平面
所成的角的正弦值;
(3)求点
到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com