【题目】已知函数
,
.
(1)若
,函数
在
上有三个零点,求实数
的取值范围;
(2)若常数
,且对任何
,不等式
恒成立,求实数
的取值范围.
【答案】(1)
;(2)当
时,
;当
时,
;当
时,![]()
【解析】
(1)
时,方程
有三个解,即函数
与
在
上有三个交点,结合函数的图象,可得出结论;
(2)不等式
恒成立,由
,可得
,令
,可知
,所以
恒成立,只需
,分别求出
,即可得出答案.
(1)
时,
,令
,则
.
令
,则
,
作出
的图象,如下图:
当
时,
单调递增;当
时,
单调递减;当
时,
单调递增,且
,
.
方程
在
上有三个解,即函数
与
在
上有三个交点,结合图形可得
,解得
.
![]()
(2)由题意,
恒成立,
由
,可得
,即
,所以
,
令
,由
,可知
,所以
恒成立,只需满足
.
①因为函数
在
上单调递增,所以
;
②函数
在
上的单调性为:在
上单调递减,在
上单调递增.
所以,当
,即
时,
;
当
,即
时,
;
当
,即
时,
;
综上,当
时,
;当
时,
;当
时,
.
科目:高中数学 来源: 题型:
【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从
四所高校中选2所.
(Ⅰ)求甲、乙、丙三名同学都选
高校的概率;
(Ⅱ)若已知甲同学特别喜欢
高校,他必选
校,另在
三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2所.
(ⅰ)求甲同学选
高校且乙、丙都未选
高校的概率;
(ⅱ)记
为甲、乙、丙三名同学中选
校的人数,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了解某产品的销售情况,选择某个电商平台对该产品销售情况作调查.统计了一年内的月销售数量(单位:万件),得到该电商平台月销售数量的茎叶图.
![]()
(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;大于等于30万件且小于40万件,当月奖励该电商平台5万元;当月低于30万件没有奖励,用该样本估计总体,从电商平台一个年度内任取两个月,记这两个月企业发给电商平台的奖金为万元,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校需从甲、乙两名学生中选一人参加物理竞赛,这两名学生最近5次的物理竞赛模拟成绩如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
学生甲的成绩(分) | 80 | 85 | 71 | 92 | 87 |
学生乙的成绩(分) | 90 | 76 | 75 | 92 | 82 |
(1)根据成绩的稳定性,现从甲、乙两名学生中选出一人参加物理竞赛,你认为选谁比较合适?
(2)若物理竞赛分为初赛和复赛,在初赛中有如下两种答题方案:方案1:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;方案2:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.若学生乙只会5道备选题中的3道,则学生乙选择哪种答题方案进入复赛的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
,
=![]()
![]()
(Ⅰ)根据散点图判断,y=a+bx与y=c+d
哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为
,底面圆
的两条直径分别为
和
,且
,若平面
平面
.现有以下四个结论:
![]()
①
平面
;
②
;
③若
是底面圆周上的动点,则
的最大面积等于
的面积;
④
与平面
所成的角为
.
其中正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老王有一块矩形旧铁皮
,其中
,
,他想充分利用这块铁皮制作一个容器,他有两个设想:设想1是沿矩形的对角线
把
折起,使
移到
点,且
在平面
上的射影
恰好在
上,再利用新购铁皮缝制其余两个面得到一个三棱锥
;设想2是利用旧铁皮做侧面,新购铁皮做底面,缝制一个高为
,侧面展开图恰为矩形
的圆柱体;
![]()
(1)求设想1得到的三棱锥
中二面角
的大小;
(2)不考虑其他因素,老王的设想1和设想2分别得到的几何体哪个容积更大?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国的嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡视探测的航天器.2019年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发表.如图所示,
![]()
现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点
变轨进入以月球球心
为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在
点第二次变轨进入仍以
为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①
;②
;③
;④
.其中正确的式子的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com