【题目】老王有一块矩形旧铁皮
,其中
,
,他想充分利用这块铁皮制作一个容器,他有两个设想:设想1是沿矩形的对角线
把
折起,使
移到
点,且
在平面
上的射影
恰好在
上,再利用新购铁皮缝制其余两个面得到一个三棱锥
;设想2是利用旧铁皮做侧面,新购铁皮做底面,缝制一个高为
,侧面展开图恰为矩形
的圆柱体;
![]()
(1)求设想1得到的三棱锥
中二面角
的大小;
(2)不考虑其他因素,老王的设想1和设想2分别得到的几何体哪个容积更大?说明理由.
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…,
(
)全部填入一个2行
列的表格中,每格填一个数字,第一行填入的数字依次为
,
,…,
,第二行填入的数字依次为
,
,…,
.记
.
![]()
(Ⅰ)当
时,若
,
,
,写出
的所有可能的取值;
(Ⅱ)给定正整数
.试给出
,
,…,
的一组取值,使得无论
,
,…,
填写的顺序如何,
都只有一个取值,并求出此时
的值;
(Ⅲ)求证:对于给定的
以及满足条件的所有填法,
的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线
:
的焦点为
,以
为直角顶点的等腰直角
的三个顶点
,
,
均在抛物线
上.
![]()
(1)过
作抛物线
的切线
,切点为
,点
到切线
的距离为2,求抛物线
的方程;
(2)求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
的元素均为实数,若对任意
,存在
,
,使得
且
,则称元素个数最少的
和
为
的“孪生集”;称
的“孪生集”的“孪生集”为
的“2级孪生集”;称
的“2级孪生集”的“孪生集”为
的“3级孪生集”,依此类推……
(1)设
,直接写出集合
的“孪生集”;
(2)设元素个数为
的集合
的“孪生集”分别为
和
,若使集合
中元素个数最少且所有元素之和为2,证明:
中所有元素之和为
;
(3)若
,请直接写出
的“
级孪生集”的个数,及
所有“
级孪生集”的并集
的元素个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+m|+|2x-1|.
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含
,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的右顶点为
,过点
作直线
与圆
相切,与椭圆
交于另一点
,与右准线交于点
.设直线
的斜率为
.
![]()
(1)用
表示椭圆
的离心率;
(2)若
,求椭圆
的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com