精英家教网 > 高中数学 > 题目详情
22、如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
分析:(1)要证明四点共圆,可根据圆内接四边形判定定理:四边形对角互补,而由AP是⊙O的切线,P为切点,易得∠APO=90°,故解答这题的关键是证明,∠AMO=90°,根据垂径定理不难得到结论.
(2)由(1)的结论可知,∠OPM+∠APM=90°,只要能说明∠OPM=∠OAM即可得到结论.
解答:证明:(Ⅰ)连接OP,OM.
因为AP与⊙O相切于点P,所以OP⊥AP.
因为M是⊙O的弦BC的中点,所以OM⊥BC.
于是∠OPA+∠OMA=180°.
由圆心O在∠PAC的内部,可知四边形M的对角互补,
所以A,P,O,M四点共圆.

解:(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.
由(Ⅰ)得OP⊥AP.
由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.
又∵A,P,O,M四点共圆
∴∠OPM=∠OAM
所以∠OAM+∠APM=90°.
点评:本题是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们注意熟练掌握:1.射影定理的内容及其证明; 2.圆周角与弦切角定理的内容及其证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

22、如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.

查看答案和解析>>

科目:高中数学 来源:2010年海南省高二下学期期末测试数学文 题型:解答题

(本小题10分)

如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点。

(1)   证明:A,P,O,M四点共圆;

(2)   求OAM+APM的大小。

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(海南) 题型:解答题

(本小题满分10分)选修4-1:几何证明选讲

如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于BC两点,圆心O的内部,点MBC的中点.

(Ⅰ)证明APOM四点共圆;

(Ⅱ)求∠OAM+∠APM的大小.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012年内蒙古赤峰市元宝山二中高考数学三模试卷(理科)(解析版) 题型:解答题

如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.

查看答案和解析>>

同步练习册答案