精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px的准线和双曲线
x2
p2
-
y2
12
=1
的左准线重合,则抛物线被双曲线的一条渐近线截得的弦长为(  )
A.2B.
8
3
C.4D.
4
3
抛物线y2=2px的准线为:x=-
p
2
;双曲线
x2
p2
-
y2
12
=1
的左准线为:x=-
p2
p2+12
,因为抛物线y2=2px的准线和双曲线
x2
p2
-
y2
12
=1
的左准线重合,-
p
2
= -
p2
p2+12
,解得p=2;抛物线方程为:y2=4x和双曲线
x2
4
-
y2
12
=1

它的渐近线为:y=±
3
x.所以
y2=4x
y=
3
x
,所以3x2=4x,可得交点坐标(0,0),(
4
3
4
3
3
),
所求弦长为:
(
4
3
)
2
+(
4
3
3
)
2
=
8
3

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案