【题目】一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.
(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;
(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】(1) 直线kxy13k,当k变动时,所有直线都通过一个定点,求这个定点;
(2) 过点P(1,2)作直线l交x、y轴的正半轴于A、B两点,求使
取得最大值时,直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系平面
上的一列点
,
,…,
,记为
,若由
构成的数列
满足
,
,其中
为与
轴正方向相同的单位向量,则称
为
点列.
(1)判断
,
,
,…,
,是否为
点列,并说明理由;
(2)若
为
点列.且点
在点
的右上方,(即
)任取其中连续三点
,
,
判断
的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若
为
点列,正整数
,满足
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
R.
(1)如果曲线
在x=1处的切线斜率为1,求实数
的值;
(2)若函数
的极小值不超过
,求实数
的最小值;
(3)对任意
[1,2],总存在
[4,8],使得
=
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里有大小相同的3个红球和3个黑球,从盒子里随机取球,取到每个球的可能性是相同的,设取到一个红球得1分,取到一个黑球得0分.
(Ⅰ)若从盒子里一次随机取出了3个球,求得2分的概率;
(Ⅱ)着从盒子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,
,
为等边三角形,
是线段
上的一点,且
平面
.
![]()
(1)求证:
为
的中点;
(2)若
为
的中点,连接
,
,
,
,平面
平面
,
,求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com