【题目】如图,在宽为
的路边安装路灯,灯柱
高为
,灯杆
是半径为
的圆
的一段劣弧.路灯采用锥形灯罩,灯罩顶
到路面的距离为
,到灯柱所在直线的距离为
.设
为灯罩轴线与路面的交点,圆心
在线段
上.
![]()
(1)当
为何值时,点
恰好在路面中线上?
(2)记圆心
在路面上的射影为
,且
在线段
上,求
的最大值.
【答案】(1)当
为
时,点
在路面中线上;(2)![]()
【解析】
(1)以O为原点,以OA所在直线为y轴建立平面直角坐标系,求出PQ的方程,设C(a,b),根据CA=CP=r列方程组可得出a,b的值,从而求出r的值;
(2)用a表示出直线PQ的斜率,得出PQ的方程,求出Q的坐标,从而可得出|HQ|关于a的函数,根据a的范围和基本不等式得出|HQ|的最大值.
(1)以O为原点,以OA所在直线为y轴建立平面直角坐标系,则A(0,8),P(2,10),Q(7,0),
∴直线PQ的方程为2x+y﹣14=0.设C(a,b),则
,
两式相减得:a+b﹣10=0,又2a+b﹣14=0,解得a=4,b=6,
∴
.∴当
时,点Q恰好在路面中线上.
(2)由(1)知a+b﹣10=0,
当a=2时,灯罩轴线所在直线方程为x=2,此时HQ=0.
当a≠2时,灯罩轴线所在方程为:y﹣10=
(x﹣2),
令y=0可得x=12﹣
,即Q(12﹣
,0),
∵H在线段OQ上,∴12﹣
≥a,解得2≤a≤10.
∴|HQ|=12﹣
﹣a=12﹣(
+a)≤12﹣
=12﹣
,
当且仅当
=a即a=
时取等号.∴|HQ|的最大值为(12﹣
)m.
![]()
科目:高中数学 来源: 题型:
【题目】某大型工厂有
台大型机器,在
个月中,
台机器至多出现
次故障,且每台机器是否出现故障是相互独立的,出现故障时需
名工人进行维修.每台机器出现故障的概率为
.已知
名工人每月只有维修
台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得
万元的利润,否则将亏损
万元.该工厂每月需支付给每名维修工人
万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有
名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有
名维修工人.
(ⅰ)记该厂每月获利为
万元,求
的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘
名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为
.如果
,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果
,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为
,即取出的产品是优质品的概率都为
,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为
(单位:元),求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为
,样本数据分组为
,
,
,
,
.
![]()
(1)求直方图中a的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;
(3)求该校学生上学路上所需的平均时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在数列{an}中,设a1为首项,其前n项和为Sn,若对任意的正整数m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3.
(1)设数列{an}为等差数列,且公差为d,求
的取值范围;
(2)设数列{an}为等比数列,且公比为q(q>0且q≠1),求a1
q的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为
的函数
,若同时满足下列条件:
①
在
内单调递增或单调递减;
②存在区间
,使
在
上的值域为
;
那么把
叫闭函数.
(1)求闭函数
符合条件②的区间
;
(2)判断函数
是否为闭函数?并说明理由;
(3)若
是闭函数,求实数
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列
中,
,且对任意
,
成等差数列,其公差为
.
(1)若
,求
的值;
(2)若
,证明
成等比数列(
);
(3)若对任意
,
成等比数列,其公比为
,设
,证明数列
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com