已知函数
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上不单调,求
的取值范围;
(3)当
时,函数
的图像与x轴交于两点
,且
,又
是
的导函数,若正常数
满足条件
.证明:
.
(1)-1;(2)
;(3)参考解析
解析试题分析:(1)因为函数
,当
时.求出函数
的导数,即可得到
上函数的单调性,从而得到函数的最大值.
(2)因为
,若
在区间
上不单调,即等价于函数
在(0,3)上有实数解,且无重根.所以由
,分离变量
,通过研究函数
,
的范围,即可得到
取值范围.
(3)因为当
时,函数
的图像与x轴交于两点
,所以可得
即可用
表示m.又由
化简.可消去m.即可得到
关于
的代数式,再利用导数知识求出
的最值即可得结论.
试题解析:(1) ![]()
函数
在[
,1]是增函数,在[1,2]是减函数,
所以
.
(2)因为
,所以
,
因为
在区间
上不单调,所以
在(0,3)上有实数解,且无重根,
由
,有
=
,(
)
所以![]()
![]()
(3)∵
,又
有两个实根
,
∴
,两式相减,得
,
∴
,
于是![]()
.
.
要证:
,只需证:![]()
只需证:
.(*)
令
,∴(*)化为
,只证
即可.
在(0,1)上单调递增,
,即
.
∴
.
考点:1.函数的最值.2.函数的单调性的应用.3.等价变换数学思想.4.换元的数学思想.5.运算量较大属于有难度题型.
科目:高中数学 来源: 题型:解答题
已知函数
(
,
为自然对数的底数).
(1)若曲线
在点
处的切线平行于
轴,求
的值;
(2)求函数
的极值;
(3)当
的值时,若直线
与曲线
没有公共点,求
的最大值.
(注:可能会用到的导数公式:
;
)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).![]()
(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com