精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
(1)若a=0时,直线y=x+b为函数y=f(x)的一条切线,求实数b的值;
(2)是否存在实数a,使f(x)在[1,e]上的最小值为,若存在,求出a的值;若不存在,说明理由.
【答案】分析:(1)把a=0代入函数解析式,求导后令导函数的值等于1得到直线y=x+b与函数y=f(x)的切点,把切点代入直线方程即可得到b的值;
(2)求出原函数的导函数,由导函数大于0解出x的范围,然后分a大于0和小于0讨论,当a<0时具体分三种情况讨论,利用f(x)在[1,e]上的最小值为求a的值.
解答:解:(1)由f(x)=lnx-(x>0),
当a=0时,f(x)=lnx,
,由,得x=1,代入y=lnx,得y=0.
把(1,0)代入y=x+b,得b=-1;
(2)
令f'(x)≥0
∴x+a≥0,∴x≥-a.
若a>0,则f'(x)>0,函数在x>0单调增.
若a<0,则有极小值点x=-a,函数在x>-a单调增.
当-1≤a<0时,在[1,e]上f'(x)≥0,∴f(x)min=f(1)=-a≤1,不合题意.
当-e<a<-1时,f(x)min=f(-a)=ln(-a)+1=,∴a=-
当a≤-e时,f(x)min=f(e)=>2不合题意.
综上得:a=-
点评:本题考查了利用导数研究函数在闭区间上的最值,考查了分类讨论的数学思想方法,解答的关键是对a的范围正确分段,此题是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案