精英家教网 > 高中数学 > 题目详情

椭圆的两个焦点为,点在椭圆上,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

(1) 椭圆的方程为;(2) 直线的方程:


解析:

(Ⅰ)因为点在椭圆上,

所以

中,

故椭圆的半焦距从而

所以椭圆的方程为

(Ⅱ)设的坐标分别为.

已知圆的方程为

所以圆心的坐标为

从而可设直线的方程为

代入椭圆的方程得

,是方程的两个根,

因为关于点对称,

所以解得

所以直线的方程 

经检验,所求直线方程符合题意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点为F1(-2
2
,0)
F2(2
2
,0)
,P为椭圆上一点,满足∠F1PF2=60°.
(1)当直线l过F1与椭圆C交于M、N两点,且△MF2N的周长为12时,求C的方程;
(2)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点为F1(-1,0)、F2(1,0),离心率e=
12

(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潮州二模)已知椭圆C的两个焦点为F1(-1,0),F2(1,0),点A(1,
2
2
)
在椭圆C上.
(1)求椭圆C的方程;
(2)已知点B(2,0),设点P是椭圆C上任一点,求
PF
1
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

()(本题满分10分)已知椭圆的两个焦点为,点 在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)记为坐标原点,过的直线与椭圆相交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:2014届山东省高二上学期期末模拟理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;

(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.

 

查看答案和解析>>

同步练习册答案