【题目】麻团又叫煎堆,呈球形,华北地区称麻团,是一种古老的中华传统特色油炸面食,寓意团圆。制作时以糯米粉团炸起,加上芝麻而制成,有些包麻茸、豆沙等馅料,有些没有。一个长方体形状的纸盒中恰好放入4个球形的麻团,它们彼此相切,同时与长方体纸盒上下底和侧面均相切,其俯视图如图所示,若长方体纸盒的表面积为576
,则一个麻团的体积为_______
.
![]()
科目:高中数学 来源: 题型:
【题目】2018年俄罗斯世界杯将于2018年6月14日至7月15日在俄罗斯境内
座城市的
座球场内举行,共有
支球队参加比赛,其中欧洲有
支球队参赛,中北美球队有
支球队参赛,亚洲、南美洲、非洲各有
支球队参赛,所有参赛球队被平均分入
个小组.已知
小组的
支队伍来自不同的大洲,东道主俄罗斯(俄罗斯属于欧洲球队)和墨西哥(墨西哥属于中北美球队)在
小组中,那么南美洲球队巴西队在
小组的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:(1)正方形的四条边相等;(2)有两个角是
的三角形是等腰直角三角形;(3)正数的平方根不等于0;(4)至少有一个正整数是偶数;是全称量词命题的有________;是存在量词命题的有________.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),其中
为直线
的倾斜角.以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程是
.
(1)写出直线
的普通方程和曲线
的直角坐标方程;
(2)若点
的极坐标为
,直线
经过点
且与曲线
相交于
两点,求
两点间的距离
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足
,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用
(单位:千万元)对年销售量y(单位:万件)的影响,统计了近10年投入的年研发费用x,与年销售量
的数据,得到散点图如图所示:
![]()
(1)利用散点图判断,
和
(其中
为大于0的常数)哪一个更适合作为年研发费用
和年销售量
的回归方程类型(只要给出判断即可,不必说明理由).
(2)对数据作出如下处理:令
,
,得到相关统计量的值如下表:
|
|
|
|
15 | 15 | 28.25 | 56.5 |
根据(1)的判断结果及表中数据,求
关于
的回归方程;
(3)已知企业年利润z(单位:千万元)与
,
的关系为
(其中
…),根据(2)的结果,要使得该企业下年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据
,
…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:
![]()
(1)由散点图知,可用回归模型
拟合
与
的关系,试根据附注提供的有关数据建立
关于
的回归方程
(2)若把月收入不低于2万元称为“高收入者”.
![]()
试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?
附注:①.参考数据:
,
,
,
,
,
,
,其中
,取
,![]()
②.参考公式:回归方程
中斜率
和截距
的最小二乘估计分别为:
,![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③.
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的不等式
,下列结论正确的是( )
A.当
时,不等式
的解集为![]()
B.当
,
时,不等式
的解集为![]()
C.当
时,不等式
的解集可以为
的形式
D.不等式
的解集恰好为
,那么![]()
E.不等式
的解集恰好为
,那么![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究函数f(x)=
(x∈R)时,分别给出下面几个结论:
①等式f(-x)=-f(x)在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三个根.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com