(本小题满分14分)如图,椭圆
:
的左焦点为
,右焦点为
,离心率
.过
的直线交椭圆于
两点,且△
的周长为
.
![]()
(Ⅰ)求椭圆
的方程.
(Ⅱ)设动直线
:
与椭圆
有且只有一个公共点
,且与直线
相交于点
.试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由.
(Ⅰ)
;(Ⅱ)证明见解析.
【解析】
试题分析:(Ⅰ)∵过
的直线交椭圆于
两点,且△
的周长为
.
∴
∴
∵
,∴
,∴![]()
∴椭圆
的方程为
……4分
(Ⅱ)由
,消元可得:
……5分
∵动直线
:
与椭圆
有且只有一个公共点
,
∴
∴
∴
,
此时
即
,
由
得
……8分
取
,此时
,
以
为直径的圆为
,交
轴于点
,
取
,此时
,
以
为直径的圆为
交
轴于点
或
,
故若满足条件的点
存在,即
,
……12分
证明如下
∵
,
∴![]()
故以
为直径的圆恒过
轴上的定点
.
……14分
考点:本小题主要考查椭圆标准方程的求法、直线与椭圆的位置关系以及与圆结合的综合问题,考查学生综合运用所学知识的能力和计算能力.
点评:遇到直线与椭圆的位置关系的题目,往往免不了要把直线方程和椭圆方程联立方程组,消去一个未知数,然后利用根与系数的关系进行解答,有时也和向量结合起来解决问题,运算量比较大,难度中等偏上,但是是高考中常考的题目,必须加以重视.
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com