【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是( )
![]()
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.二面角P﹣EF﹣Q的大小
【答案】B
【解析】
A选项:根据
和平面
都是固定的,得到
到平面
的距离也是固定的.
B选项:因为
是动点,
也是动点,得到直线
与平面
所成的角不是定值.
C选项:因为
的面积是定值,高也是定值,得到三棱锥体积也是定值.
D选项:因为
,
为
上任意一点,
、
为
上任意两点,所以二面角
的大小为定值.
A选项:因为平面
也是平面
,既然
和平面
都是固定的,所以
到平面
的距离也是固定的,故A为定值.
B选项:因为
是动点,
也是动点,推不出定值结论,所以B不是定值.
C选项:因
长为定值,所以
的面积是定值,再根据选项A知:
到平面
的距离也是定值,所以C是定值.
D选项:因为
,
为
上任意一点,
、
为
上任意两点,所以二面角
的大小为定值,所以D是定值.
故选:B
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
的上顶点为
,左、右焦点分别为
,
,直线
的斜率为
,点
,
在椭圆
上,其中
是椭圆上一动点,
点坐标为
.
(1)求椭圆
的标准方程;
(2)作直线
与
轴垂直,交椭圆于
,
两点(
,
两点均不与
点重合),直线
,
与
轴分别交于点
,
,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①若线性回归方程为
,则当变量
增加一个单位时,
一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程
必过点
;④抽签法属于简单随机抽样;其中错误的说法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点在平面直角坐标系的原点
处,极轴与
轴的正半轴重合,且长度单位相同;曲线
的方程是
,直线
的参数方程为
(
为参数,
),设
, 直线
与曲线
交于
两点.
(1)当
时,求
的长度;
(2)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线2x﹣y﹣1=0与直线x﹣2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y﹣15=0的直线l1的方程;(结果写成直线方程的一般式)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在一个实数
,使得
成立,则称
为函数
的一个不动点,设函数
(
,
为自然对数的底数),定义在
上的连续函数
满足
,且当
时,
.若存在
,且
为函数
的一个不动点,则实数
的取值范围为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现从这两校参加考试的学生数学成绩在100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如下的茎叶图.
![]()
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关;
(3)若从这40名学生中选取数学成绩在
的学生,用分层抽样的方式从甲乙两校中抽取5人,再从这5人中随机抽取3人分析其失分原因,求这3人中恰有2人是乙校学生的概率.
参考公式与临界值表:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com